智能決策與機器學(xué)習研究中心系列講座(一) 2019-10-30 題目: Learning theory for distributed learning報告人:林紹波,bwin必贏(yíng)唯一官網(wǎng)教授時(shí)間:2019年11月4日(周一)下午15:00-16:30地點(diǎn):管院313會(huì )議室歡迎廣大師生前來(lái)參加!報告內容: We analyze the performance of distributed learning based on a divide-and-conquer strategy. This scheme applies a specified learning algorithm to data subsets that are distributively stored on multiple servers to produce individual output functions, and then takes a weighted average of the individual output functions as a final estimator. We study that under which condition distributed learning is feasible and conduct several strategies such as semi-supervised distributed learning and communications to improve its performance further. 報告人簡(jiǎn)介:林紹波,bwin必贏(yíng)唯一官網(wǎng)教授,青年拔尖人才。博士畢業(yè)于bwin必贏(yíng)唯一官網(wǎng)數學(xué)與統計學(xué)院。曾先后于香港城市大學(xué)數學(xué)系、香港理工大學(xué)應用數學(xué)系、香港城市大學(xué)數據科學(xué)學(xué)院擔任博士后、副研究員、研究員。研究方向為大數據分析、分布式計算及深度學(xué)習。主持或以核心成員參與國家自然科學(xué)基金9項。 在Journal of Machine Learning Research, Applied and Computational Harmonics Analysis, IEEE Transactions on Signal Processing, IEEE Transactions on Neural Networks and Learning Systems等著(zhù)名期刊發(fā)表論文50余篇。